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Motivation

• Interactive	technology	is	getting	more	and	more	ubiquitous

Fabien	Ringeval 2



Motivation

• Engineering	research	focused	on	human-centered technology
• Automatic	human	behaviour	understanding

• General	interaction	dynamics	
• Developmental,	psychiatric	disorders
• Depression,	suicide	risk,	marital	therapy
• Solitude,	gerontechnology

• Overlap	with	many	research	domains
• Social	&	Human	Sciences
• Psychology,	Psychiatry
• Signal	processing
• Machine	learning
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Human	Behaviour

• Push-Pull	effect	(Scherer)	— WYSIWYG

K.	Scherer,	The	evolutionary origin of	multimodal	synchronization in	emotional expression,	Journal	of	Anthropological Sciences,	
Vol.	91	(2013),	pp.	185-200.



Human	Behaviour	Understanding
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Human	Behaviour	Understanding	from	Speech

• Paralinguistic – reading between the	lines:	« How »	vs	« What »
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Human	Behaviour	Understanding	from	Speech

• The	voice	tells	a	lot	about	ourselves	
• Age,	gender,	emotion,	 culture,	personality,	 role,	mental	state,	physical	state,	…
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Human	Behaviour	Understanding	from	Speech

• Paralinguistic:	from	short-term	 states	to	long-term	traits
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Age,	gender,	culture,	
personality,	…

Long-term	traitsShort-term	states

Emotions,	irony,	sarcasm,
pain,	trust,	frustration,	…

Intermediate	traits	and	states

Mood,	social	signals,	
pathology,	…

TimeFocus	of	this	talk



Collecting	Affective	Data

• Elicitation	methods
• Acted,	certainty	+,	naturalness	– (EMODB,	GEMEP)
• Induced,	certainty	+–,	naturalness	+– (eNTERFACE,	CPESD)
• Spontaneous:	certainty	–, naturalness	+ (SEMAINE,	RECOLA)
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Quantifying	Emotions

• Discrete	framework
• Semantic	descriptions
• “Hard-coded”	in	the	brain
• Common	categories:	

• Anger
• Fear
• Happiness
• Sadness
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R.	Plutchik,	Emotions:	A	general	psychoevolutionary theory,	in	K.	R.	Scherer	
and	P.	Ekman	[Eds],	Approaches	to	Emotion,	Erlbaum,	Hillsdale	(NJ),	1984.	



Quantifying	Emotions

• Continuous	 framework
• Description	of	properties
• Common	dimensions

• Arousal:	calm	vs.	excited
• Valence:	negative	vs.	positive
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valence

arousal

J. A. Russell. A circumplex model of affect. Journal of Personality and Social 
Psychology, 39(6):1161–1178, 1980. 



Quantifying	Emotions

• Continuous	 framework
• Description	of	properties
• Common	dimensions

• Arousal:	calm	vs.	excited
• Valence:	negative	vs.	positive

• Many	categories	can	be
mapped	onto	the	VA	space
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3.3. THE RECOLA DATABASE 37

two-dimensional space [28]. It proposes that a↵ective behavior is best expressed in
terms of arousal and valence [47]. Arousal indicates how excited or calm an emotion
is whereas valence describes how positive or negative it is. Figure 3.2 shows how
common emotions can be expressed in the arousal-valence space.
For the emotion recognition task we will be using this representation of a↵ects as it
avoids the above named caveats of the categorical approach which finally makes it
a regression task.

Figure 3.2: Quantification of emotions within the arousal-valence space as proposed
by [47]. Illustration taken from [41]

G.	Paltoglou and	M.	Thelwall.	Seeing	stars	of	valence	and	arousal	in	blog	posts.	IEEE	TAFC,	4(1):116–123,	2013.	



Data	Collection:	RECOLA	database

• Collect	multimodal	data	in	ecologically	valid situation	(collaboration)

13Fabien	Ringeval



Data	Collection:	RECOLA	database
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• First	dyad	(P13	— P14)

F.	Ringeval,	Introducing	the	RECOLA	Multimodal	Corpus	of	Remote	Collaborative	and	Affective	Interactions,	
in	Proc.	of	EmoSPACE,	IEEE	International	Conference	on	Face	&	Gestures	2013.	



Data	Annotation:	ANNEMO
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• Web-based annotation	interface	(open	source);	6	raters (3F/3M)



Data	Annotation:	ANNEMO
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• Raw	data



Data	Annotation:	ANNEMO
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• Interpolated	data (piecewise	Hermite interpolation;	𝑑2/ 𝑑t not	
continuous)



Data	Annotation:	ANNEMO
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• Interpolated	data for	all	raters

bias
delay



Data	Annotation:	post-processing
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• Can	we	improve	by	post-processing?	 (E.g.,	zero-centring)



Data	Annotation:	post-processing

Fabien	Ringeval 20

• Can	we	improve	by	post-processing?	 (E.g.,	zero-centring)
• Looks	great	and	improves	Inter-RaterAgreement (averaged	𝜌#)
• BUT,	mean	perceived	emotion	 is	forced	to	neutral

Arousal Valence

raw	;	𝝆𝒄 0.28 0.37

raw	;	% pos. 59.0 70.5

zero-m.	;	𝝆𝒄 0.33 0.43

zero-m.	;	%pos. 50.8 44.8

𝜌# =
2𝜌𝜎)𝜎*

𝜎)+ + 𝜎*+ + 𝜇) − 𝜇*
+



Data	Annotation:	post-processing
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• Can	we	improve	by	post-processing?	
• Proposed	method:	centre	to	mean	weighted	by	the	inter-rater agreement

1. Compute	inter-rater agreement	𝜌/0 𝑖 for	a	dimension	𝑑 and	an	evaluator	𝑖 ∈ 1, 𝑁6
2. Average	ratings	𝑦0

68 of	all	evaluators	𝑒: and	weight	by	𝜌/0 𝑖 to	obtain	the	centring	
value	𝑦/0

3. Centre	ratings	and	average	to	obtain	a	gold-standard trace	𝑔0 𝑡

𝑦/0 =
1
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Data	Annotation:	post-processing
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• Post-processing	by	centring	with	IRA
• Same	improvement	 as	zero-centring	for	IRA
• Original	(positive)	 skew	better	preserved

Arousal Valence

raw	;	𝛒𝐜 0.28 0.37

raw	;	% pos. 59.0 70.5

zero-m.	;	𝛒𝐜 0.33 0.43

zero-m.	;	%pos. 50.8 44.8

wgt-m.	;	𝝆𝒄 0.33 0.43

wgt-m.	;	% pos. 48.5 74.1



Emotion	Recognition	from	Speech
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• Speech	conveys	many	relevant	cues

Speech waveform

Spectrum

Formants

F0

Loudness



Emotion	Recognition	from	Speech
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• Features	extraction	from	speech	—
• Low-level	descriptors	and	functionals
• Sliding	window	shifted	forward	at	a	constant	rate	(25	Hz)

Acoustic
Signal

Low-level
Descriptors Functionals Acoustic

Features

N LLDs
2	– 150

M	Functionals
2	– 30

N	xM	features
4	– 4.5k



Emotion	Recognition	from	Speech

• Machine	learning:	sequential	learning	problem

25

Machine learning

… …

Speech	sequence

Emotional	dimension	(e.g.,	arousal)

… …

Features



Experiment:	Asynchronous	modelling

26

• Modelling	asynchronous	 ratings	of	emotion	with	(B)LSTM-RNN
• LSTM-RNN	can	capture	long-range	contextual	dependencies
• Exploit	this	to	model	delay	between	raters (multi-task	learning)

Fabien	Ringeval,	Prediction	of	Asynchronous	Dimensional	Emotion	Ratings	from	Audiovisual	and	Physiological	Data.
Pattern	Recognition	Letters,	66:22–30,	November	2015.
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Fig. 1. Top: face tracking and head-pose estimation on a video frame; Bot-
tom: optical flow calculated around the head region.

signals for extracting LLD. In this study, LLD were extracted
from both ECG and EDA signals with overlapping (step of
0.48 s) windows of 4 s length. 28 LLD were extracted in to-
tal from the ECG signals: the heart rate (HR) and its measure
of variability (HRV), the zero-crossing rate, the 4 first statisti-
cal moments (Picard et al. (2001)), the normalised length den-
sity (NLD) and the non-stationary index (NSI), the spectral en-
tropy, slope and mean frequency plus 12 spectral coe�cients
(Hanning overlapping windows ranging from 3 to 27 Hz), and
the power of HR in low frequency (LF, 0.04-0.15 Hz), high fre-
quency (HF, 0.15-0.4 Hz) and the LF/HF ratio (Bilchick and
Berger (2006)); the first order derivate was furthermore com-
puted on all excepted HR and HRV, which thus provided 54
LLD in total for the ECG signals.

In order to extract the heart rate (HR), the interval between
two QRS complexes defined as R-R interval (tR�R) was es-
timated using the real-time algorithm developed by Pan and
Tompkins (1985). The respiration drift was removed using a
morphological operator (maxima and minima computed on a
sliding window). The NSI is a measure of signal complexity; it
segments the signals into small parts and estimates the variation
of the local averages (Hausdor↵ et al. (2000)). Finally, the NLD
index was extracted to capture non-linear temporal variations of
the signals:

NLD =
1
N

NX

i=2

|yn(i) � yn(i � 1)|, (2)

where yn(i) and N represent the ith sample after amplitude nor-
malization and the length of the signal respectively (Kalauzi
et al. (2009)).

EDA reflects a rapid, transient response called skin conduc-
tance response (SCR), as well as a slower, basal drift called skin
conductance level (SCL) (Dawson et al. (2007)). Both SCL (0–

Fig. 2. LSTM block, containing a memory cell and the input (i), output
(o) and forget (f) gates. State shown at timestep t. Input data vector (x),
connection weights wab (multiplicative), bias values b, cell output y. Non-
linear squashing functions g() and h(). The vector containing all outputs of
the current hidden layer at timestep t is denoted as yt . T denoting a time
delay unit of one timestep. X in a circle denoting a multiplicative unit. ⌃
denotes a summation unit. f (), g(), and h() are activation functions (non-
linearities). (Eyben, 2014)

0.5 Hz) and SCR (0.5–1 Hz) were extracted using a 3rd order
Butterworth filter, 30 LLD were then computed in total: the
temporal slope of EDA (first coe�cient of a first order regres-
sion polynomial), the spectral entropy and mean frequency of
SCR, the NSI and NLD index, the 4 first statistical moments,
the mean value of the first order derivate, and the proportion
and mean of its negative part for EDA, SCL and SCR. Finally,
first order derivate of these LLD were computed, which pro-
vided 60 LLD in total for EDA signals.

3.3. Continuous emotion prediction
3.3.1. Memory-enhanced networks

Traditional Feed-Forward Neural Networks (FF-NN) with
sigmoid summation units have no memory or feedback connec-
tions, i. e., they have no knowledge about other inputs/frames
than the current time step. A logical extension is to make the
network recurrent, i. e., add a feedback from the output to the
inputs with a delay of one timestep. Such networks are known
as RNN. However, these networks su↵er from the ‘Vanishing
Gradient Problem’ (Hochreiter et al. (2001)), where the activa-
tions and/or error on the recurrent connection decay exponen-
tially. This limits the amount of temporal context that is acces-
sible to the networks to approximately 10 frames. To overcome
this problem, LSTM-RNN have been introduced originally by
Hochreiter and Schmidhuber (1997), and extended to the ver-
sion used in this article by Graves and Schmidhuber (2005).
The main di↵erence between the original version and the ver-
sion used in this article is the use of peep-hole connections
from the internal memory state to the input, output, and forget
gate summation units (cf. wpx in Figure 2). The sigmoid sum-
mation units in the hidden layers of a conventional RNN are
replaced by so-called LSTM memory blocks in LSTM-RNN.
These LSTM blocks can store information in the cell variable



Experiment:	Asynchronous	modelling

Fabien	Ringeval 27

• Setup
• RECOLA:	27	subjects	(9/9/9)	x	5	min.	Features:	ComParE 130	LLDs	x	5	func.
• Window	size:	from	0.5	s	(micro-expressions)	 to	6	s	(information	 loss)
• (FF,	 (B)LSTM)	DNN:	𝜎: = 0.1;	2	h.l.	(128);	100	epochs;	early	stop.	MSE
• Effect	of	window	size (best	network	topology,	 single/multi-task)
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Experiment:	Asynchronous	modelling
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• Setup
• RECOLA:	27	subjects	(9/9/9)	x	5	min.	Features:	ComParE 130	LLDs	x	5	func.
• Window	size:	from	0.5	s	(micro-expressions)	 to	6	s	(information	 loss)
• (FF,	 (B)LSTM)	DNN:	𝜎: = 0.1;	2	h.l.	(128);	100	epochs;	early	stop.	MSE
• Impact	of	contextual	modelling (averaged	over	all	modalities)
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Experiment:	Asynchronous	modelling
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• Setup
• RECOLA:	27	subjects	(9/9/9)	x	5	min.	Features:	ComParE 130	LLDs	x	5	func.
• Window	size:	from	0.5	s	(micro-expressions)	 to	6	s	(information	 loss)
• (FF,	 (B)LSTM)	DNN:	𝜎: = 0.1;	2	h.l.	(128);	100	epochs;	early	stop.	MSE
• Effect	of	multi-tasking	(mean	vs.	individual	 ratings)

Arousal Valence

AUDIO	- SINGLE .732 .412

AUDIO	- MULTI .738 .343

VIDEO	- SINGLE .403 .339

VIDEO	- MULTI .427 .349



Experiments:	CCC	as	objective	function
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• Neural	networks	typically	trained	using	SSE-related	criteria
• Goal:	Directly	optimize	predictor	for	the	evaluation	metric	instead
• 𝝆 as	evaluation	metric	not	directly	usable	for	optimization

• Scale	(ysc)	and	shift	(ysh)	invariant	(!!!)
• Leads	to	ill-posed	optimisation	problem

𝜌 =	1
𝜌 =	1
𝜌 =	1

𝜌# =	.07
𝜌#	=	.78
𝜌#	=	.15

Felix	Weninger, Fabien	Ringeval,	Erik	Marchi,	and	Björn Schuller. Discriminatively	trained	recurrent	neural	networks	for	continuous	
dimensional	emotion	recognition	from	audio.	In Proc.	of	IJCAI	2016,	pp.	2196–2202,	New	York	City	(NY),	USA,	July	2016

𝒪 = − E 𝜌#
:∈Q,R∈ℱ



Experiments:	CCC	as	objective	function
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• 𝝆𝒄:	CCC	over	the	whole	evaluation	set
• Expect	good	CCC	when	predicting	 the	correct	mean	for	each	sequence

• Σ𝝆𝒄:	Sum	the	CCC	in	each	sequence
• Need	to	get	the	variation	within	each	sequence	 right,	but	sensitive	to	noise	
in	the	gold-standard

• 𝜌# =	0.37,	Σ𝜌# =	0



Experiments:	CCC	as	objective	function
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• Setup
• RECOLA:	46	subjects	(16/15/15)	x	5	min.	Features:	eGeMAPS (AV+EC	2015)
• (FF,	 (B)LSTM)	DNN:	𝜎: = 0.1;	2	h.l.	(128);	100	epochs;	early	stop.	MSE
• Significant	 improvements	with	Σ𝝆𝒄 objective;	trade-off	between	RMSE	and	𝝆𝒄

Arousal Valence

𝒪 RMSE 𝝆𝒄 E{𝝆𝒄} RMSE 𝝆𝒄 E{𝝆𝒄}

SSE .128 .097 .161 .108 .131 .052

𝝆𝒄 .193 .254 .212 .130 .155 .080

Σ𝝆𝒄 .200 .350 .268 .192 .199 .139



Experiments:	Robustness	to	noise
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• How	non-stationary	 noise	and	reverberation	degrade	performance?
• Noises:	CHiME’15,	Smartphone	(Nexus	One),	Hall,	Train
• Various	SNR	(0dB,	3dB,	6dB,	9dB,	12dB)
• Method:	signal/feature	enhancement	with	auto-encoders

CHiME’13	0dB

CHiME’13	6dB

Original

Smartphone

Hall

Zixing Zhang, Fabien	Ringeval,	Jin Han,	Jun	Deng,	Erik	Marchi,	and	Björn Schuller. Facing	realism	in	spontaneous	emotion	recognition	
from	speech:	Feature	enhancement	by	autoencoder	with	LSTM	neural	networks.	In Proc.	INTERSPEECH	2016.



Experiments:	Robustness	to	noise
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• Results	on	Arousal	/	CHiME’15	(MFCCs,	SVR	for	prediction	– AVEC’16)

0,300

0,350

0,400

0,450

0,500

0,550

0,600

0,650

0,700

clean 12dB 9dB 6dB 3dB 0dB

w/	signal	+	feature	enh
w/	feature	enh
w/	signal	enh
w/o	enh

CC
C



Experiments:	Adieu	features?
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• CNN-DNN	can	learn	appropriate	 representation	from	raw	input
• How	well	can	it	perform	for	emotion	recognition?

• Segment the raw waveform to 6 s long sequences• Temporal convolution (F=40 space time FIR filters @ 5ms)
• Pooling across time (pool size 2) for down-sampling @ 8kHz
• Temporal convolution (M=40 FIR filters @ 500ms) 
• Max-pooling across channels (pool size 20)
• Two layers BLSTM with 128 units

George	Trigeorgis, Fabien	Ringeval,	Raymond	Brueckner,	Erik	Marchi,	Mihalis Nicolaou,	BjörnSchuller,	and	Stefanos Zafeiriou.
Adieu	features?	 End-to-end	speech	emotion	recognition	using	a	deep	convolutional	recurrent	network.	In Proc ICASSP	2016.



Experiments:	Adieu	features?
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• CNN-DNN	can	learn	appropriate	 representation	from	raw	input
• How	well	can	it	perform	for	emotion	recognition?

RMS energy range (.81)

loudness (.73) 

F0 mean (.72)



Experiments:	Adieu features?
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• Results



Experiments:	Adaptive	cooperation

38
Arianna	Mencattini,	Eugenio	Martinelli, Fabien	Ringeval,	Björn Schuller,	and	Corrado Di	Natale. Continuous	estimation	of	emotions	in	

speech	by	dynamic	cooperative	speaker	models. IEEE	Transactions	on	Affective	Computing,	2016.



Experiments:	Adaptive	cooperation
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Experiments:	Adaptive	cooperation

• Frequency	of	Single	Speaker	Regression	Model	inclusion

Fabien	Ringeval 40



Experiments:	Adaptive	cooperation

• Frequency	of	Single	Speaker	Regression	Model	inclusion

Fabien	Ringeval 41



Experiments:	Bag	of	audio	words

42

• Learn	dictionary	of	acoustic	words	instead	of	using	functionals (MFCC)	
tion 2); then we define the database and experimental setups
(Section 3). We next comment on the evaluation results (Sec-
tion 4), before concluding (Section 5).

2. Methodology

2.1. Feature extraction

Even though they do not incorporate explicitly prosodic infor-
mation, MFCCs have proven to be relevant for ERS [17]. As
acoustic LLDs, we thus computed 12 MFCCs and the logarith-
mic signal energy on 25 ms long frames, with a frame rate of
10 ms, using our open-source openSMILE toolkit [18]; a pre-
emphasis (k = 0.97) was done beforehand on the acoustic sig-
nal. All features are then standardised to zero mean and unit
standard deviation with an online approach, i. e., mean and stan-
dard deviation values are computed on the training partition and
used to standardise all features of training, validation, and test
partition.

2.2. Bag-of-audio-words

The codebook generation is performed on the training partition.
We investigate two different methods: random sampling [6],
and k-means++ clustering [19]. Random sampling can be re-
garded as the initialisation step of k-means++ clustering, where
the codebook vectors are picked iteratively from the entire train-
ing partition, with audio words having a larger distance to the al-
ready selected words have a higher probability of being chosen
next. However, codebook generation based on kmeans++ clus-
tering resulted in only little performance improvement (about
2 %), for some specific configurations. Therefore, we decided
to only use random sampling to generate the codebook on
all experiments, as it is much faster to compute compared to
kmeans++.

Regarding the codebook size, i. e., the number of audio
words, there is no general best practice. It is however obvi-
ous that the optimum codebook size depends on the number
and type of LLDs, but also on the task. In general, larger code-
books are thought to be more discriminative, whereas smaller
codebooks should generalise better [12], especially when back-
ground noise is present in the data, as smaller codebooks are
more robust against incorrect assignments.

Once the codebook has been generated, acoustic LLDs
within a certain window of the speech signal are quantised, i. e.,
assigned to the closest (Euclidean distance) audio word in the
codebook. Then, a histogram (‘bag’) is created from the fre-
quencies, where each audio word w is closest to the features of
an input frame within the window, the term frequency TF (w).
This is exemplified for a short audio excerpt in Figure 1. As
it might be the case that one input frame has a low distance
to several audio words and hence the assignment is ambigu-
ous, we take multiple assignments into account, i. e., the TF
of the A nearest audio words w is incremented by 1. Thus, no
soft thresholding, or Gaussian encoding is applied, as proposed
in [14], as preliminary experiments have not led to convincing
results.

As in the standard bag-of-words approach from document
classification, the common logarithm is taken to compress the
range of the histogram values:

TF 0
(w) = lg(TF (w) + 1) (1)

The whole BoAW framework – openWord – has been im-
plemented in Java and will be made publicly available in future
as an open-source toolkit.

Figure 1: BoAW generation exemplified.

2.3. Support vector regression

In order to perform time-continuous prediction of emotional di-
mensions (arousal and valence), we used SVMs based regres-
sion. As shown in [12], and confirmed in our preliminary ex-
periments, Gaussian and polynomial kernels do not perform
better than linear kernels with BoAW. In addition, we tested
the histogram intersection kernel [20, 12], but the performance
was similar to that with a linear kernel, for a larger computa-
tional effort. To speed up the training and tuning of the hyper-
parameters, we thus used the Liblinear toolkit [21], with the
default solver, i. e., L2-regularized / L2-loss regression with
the dual formulation of the SVMs optimisation problem, and
a unit bias. The complexity parameter is optimised in the range
C = [10

�5 � 10

0
] with a logarithmic scale. In order to com-

pensate for scaling and bias issues in the predictions, but also
noise in the data, we used the same post-processing chain as
employed in [4].

3. Experiments

3.1. Database

We evaluate the proposed method on the RECOLA (Remote
Collaborative and Affective Interactions) corpus [22], as it con-
tains fully spontaneous and natural affective behaviours. It in-
cludes 46 multimodal (audio, video, and physiological data)
recordings of French speaking participants involved in a dyadic
collaborative task. Even though the proposed openWord frame-
work could be applied similarly to video and physiological data,
we only used the audio recordings in this study.

Affective behaviour of the participants was evaluated by six
different annotators (3 female, 3 male), for the first five minutes
of each recordings, i. e., all annotators consistently annotated
all recordings. Annotation was performed for arousal and va-
lence separately, on a continuous scale ranging from �1 to +1.
Obtained labels were then resampled to a constant 40 ms frame
rate.
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tion 2); then we define the database and experimental setups
(Section 3). We next comment on the evaluation results (Sec-
tion 4), before concluding (Section 5).

2. Methodology

2.1. Feature extraction

Even though they do not incorporate explicitly prosodic infor-
mation, MFCCs have proven to be relevant for ERS [17]. As
acoustic LLDs, we thus computed 12 MFCCs and the logarith-
mic signal energy on 25 ms long frames, with a frame rate of
10 ms, using our open-source openSMILE toolkit [18]; a pre-
emphasis (k = 0.97) was done beforehand on the acoustic sig-
nal. All features are then standardised to zero mean and unit
standard deviation with an online approach, i. e., mean and stan-
dard deviation values are computed on the training partition and
used to standardise all features of training, validation, and test
partition.

2.2. Bag-of-audio-words

The codebook generation is performed on the training partition.
We investigate two different methods: random sampling [6],
and k-means++ clustering [19]. Random sampling can be re-
garded as the initialisation step of k-means++ clustering, where
the codebook vectors are picked iteratively from the entire train-
ing partition, with audio words having a larger distance to the al-
ready selected words have a higher probability of being chosen
next. However, codebook generation based on kmeans++ clus-
tering resulted in only little performance improvement (about
2 %), for some specific configurations. Therefore, we decided
to only use random sampling to generate the codebook on
all experiments, as it is much faster to compute compared to
kmeans++.

Regarding the codebook size, i. e., the number of audio
words, there is no general best practice. It is however obvi-
ous that the optimum codebook size depends on the number
and type of LLDs, but also on the task. In general, larger code-
books are thought to be more discriminative, whereas smaller
codebooks should generalise better [12], especially when back-
ground noise is present in the data, as smaller codebooks are
more robust against incorrect assignments.

Once the codebook has been generated, acoustic LLDs
within a certain window of the speech signal are quantised, i. e.,
assigned to the closest (Euclidean distance) audio word in the
codebook. Then, a histogram (‘bag’) is created from the fre-
quencies, where each audio word w is closest to the features of
an input frame within the window, the term frequency TF (w).
This is exemplified for a short audio excerpt in Figure 1. As
it might be the case that one input frame has a low distance
to several audio words and hence the assignment is ambigu-
ous, we take multiple assignments into account, i. e., the TF
of the A nearest audio words w is incremented by 1. Thus, no
soft thresholding, or Gaussian encoding is applied, as proposed
in [14], as preliminary experiments have not led to convincing
results.

As in the standard bag-of-words approach from document
classification, the common logarithm is taken to compress the
range of the histogram values:

TF 0
(w) = lg(TF (w) + 1) (1)

The whole BoAW framework – openWord – has been im-
plemented in Java and will be made publicly available in future
as an open-source toolkit.

Figure 1: BoAW generation exemplified.

2.3. Support vector regression

In order to perform time-continuous prediction of emotional di-
mensions (arousal and valence), we used SVMs based regres-
sion. As shown in [12], and confirmed in our preliminary ex-
periments, Gaussian and polynomial kernels do not perform
better than linear kernels with BoAW. In addition, we tested
the histogram intersection kernel [20, 12], but the performance
was similar to that with a linear kernel, for a larger computa-
tional effort. To speed up the training and tuning of the hyper-
parameters, we thus used the Liblinear toolkit [21], with the
default solver, i. e., L2-regularized / L2-loss regression with
the dual formulation of the SVMs optimisation problem, and
a unit bias. The complexity parameter is optimised in the range
C = [10

�5 � 10

0
] with a logarithmic scale. In order to com-

pensate for scaling and bias issues in the predictions, but also
noise in the data, we used the same post-processing chain as
employed in [4].

3. Experiments

3.1. Database

We evaluate the proposed method on the RECOLA (Remote
Collaborative and Affective Interactions) corpus [22], as it con-
tains fully spontaneous and natural affective behaviours. It in-
cludes 46 multimodal (audio, video, and physiological data)
recordings of French speaking participants involved in a dyadic
collaborative task. Even though the proposed openWord frame-
work could be applied similarly to video and physiological data,
we only used the audio recordings in this study.

Affective behaviour of the participants was evaluated by six
different annotators (3 female, 3 male), for the first five minutes
of each recordings, i. e., all annotators consistently annotated
all recordings. Annotation was performed for arousal and va-
lence separately, on a continuous scale ranging from �1 to +1.
Obtained labels were then resampled to a constant 40 ms frame
rate.

openWORD
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The gold standard, i. e., the emotion perceived by all raters,
was estimated by considering inter-evaluator agreement [23, p.
25]. As the emotion shown by the participants and the one re-
ported by the annotators are not contemporaneous, due to the
reaction time of the raters, this delay must be taken into ac-
count when using a non-context aware machine learning algo-
rithm [24]. Therefore, all annotations are shifted backward in
time before training a model. In our experiments, we optimised
the time shifts with values ranging from 0 to 8 s, and a 0.4 s step.

3.2. Evaluation

In order to ensure speaker-independence in the experiments, the
corpus was split into 3 partitions: training (16 subjects), valida-
tion (15 subjects), and testing (15 subjects); we used the exact
same partitions as in [4]. All hyper-parameters were optimised
on the validation partition, and then applied on the test parti-
tion. Training of the models was performed with data computed
only every 800 ms. In contrast, the evaluation on both valida-
tion and test set is done at the original rate, i. e., every 40 ms. As
SVMs cannot learn long-term contextual information, we opti-
mised the size of the sliding window used to compute acoustic
LLDs within the range of 4 to 12 s, with 2 s step.

To evaluate the agreement level between the predictions of
emotion and the gold standard, the standard metric is the con-
cordance correlation coefficient (CCC) [25], cf. Equation 2.
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3.3. BoAW

We performed an iterative search on the parameter space con-
sisting of delay (D), window size (W

s

), codebook size (C
s

),
number of assignments (N

A

) and the complexity parameter of
SVR (C). Preliminary experiments have shown that a delay of
3.2 s, and a window size between 6 and 8 s, provide the best
results. Thus, in the first round of optimisation, we kept the
delay constant and varied the window size only between 6 and
8 s. Results obtained during this optimisation phase are given
In Table 1.

In order to further optimise complexity, window size and
delay, we chose only three combinations of N

a

and C
s

that
prove to work well: the optimum parameters (N

a

= 200,
C

s

= 5000), a well-suited codebook size in case of single-
assignment (N

a

= 1, C
s

= 200) and the configuration (N
a

=

20, C
s

= 1000), as a trade-off between good performance for
the prediction of valence and computational effort. It must be
noted that a larger codebook size leads to a higher computa-
tional complexity. Table 2 provides the best results with those
three sets of parameters. Additionally, we show the evolution of
performance over different delays and window sizes in Figure 2
for arousal, and in Figure 3 for valence; we used here the same
configuration (N

a

= 20, C
s

= 1000) to save computation time.

3.4. Comparison with functionals

To generate a point of comparison between BoAW and func-
tionals, we computed the mean and the standard deviation for
all 13 LLDs, instead of BoAW. Same optimisation procedure as

Figure 2: Performance for arousal with different window sizes
and delays. (N

a

= 20, C
s

= 1000)

Figure 3: Performance for valence with different window sizes
and delays. (N

a

= 20, C
s

= 1000)

used for BoAW was then performed on the obtained features.
The results are given in Table 3.

3.5. Feature fusion

In order to estimate the complementarity between the two repre-
sentations of the LLDs (functionals and BoAW), we performed
early fusion of the features, i. e., we concatenated the 26 fea-
tures obtained with the functionals with the best BoAW models
obtained in Table 2. A delay of 4 s and a window size of 8 and
10 s, for arousal and valence, respectively, were chosen as this
configuration appeared to work best on average. To get a fair
comparison between the two approaches, we standardised the
features obtained with the BoAW. Results are given in Table 4.

4. Discussion

It is obvious that the optimal number of assignments depends
on the codebook size. Results show that, multi-assignment (and
thus larger codebooks) are more useful for the prediction of va-
lence compared to arousal, for which BoAW representations
are only beneficial, i. e., statistically significant (p < 0.05),
compared to simple functionals, for the largest codebook size,
cf. Table 2. However, results obtained on valence with BoAW

The gold standard, i. e., the emotion perceived by all raters,
was estimated by considering inter-evaluator agreement [23, p.
25]. As the emotion shown by the participants and the one re-
ported by the annotators are not contemporaneous, due to the
reaction time of the raters, this delay must be taken into ac-
count when using a non-context aware machine learning algo-
rithm [24]. Therefore, all annotations are shifted backward in
time before training a model. In our experiments, we optimised
the time shifts with values ranging from 0 to 8 s, and a 0.4 s step.

3.2. Evaluation

In order to ensure speaker-independence in the experiments, the
corpus was split into 3 partitions: training (16 subjects), valida-
tion (15 subjects), and testing (15 subjects); we used the exact
same partitions as in [4]. All hyper-parameters were optimised
on the validation partition, and then applied on the test parti-
tion. Training of the models was performed with data computed
only every 800 ms. In contrast, the evaluation on both valida-
tion and test set is done at the original rate, i. e., every 40 ms. As
SVMs cannot learn long-term contextual information, we opti-
mised the size of the sliding window used to compute acoustic
LLDs within the range of 4 to 12 s, with 2 s step.

To evaluate the agreement level between the predictions of
emotion and the gold standard, the standard metric is the con-
cordance correlation coefficient (CCC) [25], cf. Equation 2.
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3.3. BoAW

We performed an iterative search on the parameter space con-
sisting of delay (D), window size (W

s

), codebook size (C
s

),
number of assignments (N

A

) and the complexity parameter of
SVR (C). Preliminary experiments have shown that a delay of
3.2 s, and a window size between 6 and 8 s, provide the best
results. Thus, in the first round of optimisation, we kept the
delay constant and varied the window size only between 6 and
8 s. Results obtained during this optimisation phase are given
In Table 1.

In order to further optimise complexity, window size and
delay, we chose only three combinations of N

a

and C
s

that
prove to work well: the optimum parameters (N
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= 200,
C
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= 5000), a well-suited codebook size in case of single-
assignment (N
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= 1, C
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= 200) and the configuration (N
a

=

20, C
s

= 1000), as a trade-off between good performance for
the prediction of valence and computational effort. It must be
noted that a larger codebook size leads to a higher computa-
tional complexity. Table 2 provides the best results with those
three sets of parameters. Additionally, we show the evolution of
performance over different delays and window sizes in Figure 2
for arousal, and in Figure 3 for valence; we used here the same
configuration (N

a

= 20, C
s

= 1000) to save computation time.

3.4. Comparison with functionals

To generate a point of comparison between BoAW and func-
tionals, we computed the mean and the standard deviation for
all 13 LLDs, instead of BoAW. Same optimisation procedure as

Figure 2: Performance for arousal with different window sizes
and delays. (N
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= 20, C
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= 1000)

Figure 3: Performance for valence with different window sizes
and delays. (N
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= 20, C
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used for BoAW was then performed on the obtained features.
The results are given in Table 3.

3.5. Feature fusion

In order to estimate the complementarity between the two repre-
sentations of the LLDs (functionals and BoAW), we performed
early fusion of the features, i. e., we concatenated the 26 fea-
tures obtained with the functionals with the best BoAW models
obtained in Table 2. A delay of 4 s and a window size of 8 and
10 s, for arousal and valence, respectively, were chosen as this
configuration appeared to work best on average. To get a fair
comparison between the two approaches, we standardised the
features obtained with the BoAW. Results are given in Table 4.

4. Discussion

It is obvious that the optimal number of assignments depends
on the codebook size. Results show that, multi-assignment (and
thus larger codebooks) are more useful for the prediction of va-
lence compared to arousal, for which BoAW representations
are only beneficial, i. e., statistically significant (p < 0.05),
compared to simple functionals, for the largest codebook size,
cf. Table 2. However, results obtained on valence with BoAW
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Table 1: Best CCC (arousal|valence) for the given codebook size (C
s

) and number of assignments (N
a

) on the validation partition.

N
a

C
s

1 2 5 10 20 50 100 200 500 1000
10 .750|.358 .716|.332 .715|.222
20 .751|.355 .750|.353 .744|.314 .739|.319
50 .776|.447 .773|.463 .775|.410 .782|.393 .765|.425

100 .771|.469 .777|.477 .786|.477 .784|.440 .784|.422 .768|.382
200 .766|.474 .774|.502 .779|.491 .785|.458 .786|.431 .782|.388 .769|.399
500 .761|.480 .760|.477 .779|.519 .787|.518 .790|.512 .788|.466 .789|.442 .784|.383

1000 .763|.444 .760|.471 .777|.501 .783|.522 .789|.539 .789|.509 .787|.490 .788|.462 .785|.402
2000 .746|.459 .752|.459 .770|.494 .779|.505 .783|.528 .787|.541 .790|.530 .790|.515 .788|.449 .789|.406
5000 .742|.423 .746|.423 .760|.482 .768|.493 .772|.504 .785|.525 .791|.540 .793|.543 .792|.514 .791|.491

10000 .747|.373 .750|.373 .761|.484 .761|.484 .764|.494 .780|.515 .787|.522 .790|.532 .791|.520 .791|.509

Table 2: Optimised parameters and results for validation and
test partition for single-assignment and multi-assignment.

N
a

C
S

Dimension D W
s

C CCC
[s] [s] Valid Test

1 200 Arousal 4.0 8.0 10�3 .768 .716
20 1000 Arousal 3.6 8.0 10�4 .789 .738

200 5000 Arousal 3.2 6.0 10�5
.793 .753

1 200 Valence 4.8 12.0 10�2 .490 .417
20 1000 Valence 4.4 10.0 10�3 .550 .430

200 5000 Valence 5.2 12.0 10�1
.558 .378

Table 3: Results with functionals of LLDs.

Dimension D W
s

CCC
[s] [s] Valid Test

Arousal 4.0 8.0 .790 .720
Valence 4.0 10.0 .459 .402

are almost always significantly better than with functionals, for
both validation and test partition, except for the test partition
with the largest codebook size. Parameters thus must be tuned
more carefully for valence than for arousal, which confirms that
prediction of the emotional valence is more challenging than for
arousal. However, considering the lower performance obtained
on the test partition for valence (N

a

= 200, C
s

= 5000), a
codebook size larger than 10

3 seems not reasonable.
Early fusion of functionals and BoAW clearly improves the

performance for valence on the test partition, which thus show
their complementarity. Surprisingly, larger codebooks, which
generally worked better in case of BoAW only, decreased the
performance when fused with functionals. One possible reason
might be the larger difference of the dimensions.

A comparison of performance obtained on the audio record-
ings of RECOLA database with the two best performing meth-
ods based on DNNs is given in Table 5. All of those approaches
are significantly outperformed by the proposed BoAW for va-
lence, while gaining almost the same performance for arousal.
It must be stated, however, that the winner of the AV+EC 2015
Challenge [26], had less data available to train their model (9
sessions), and some improvement could probably be obtained
by training on more sessions.

5. Conclusions and outlook

In this paper, we have shown that, BoAW can significantly out-
perform best performing deep learning based approaches for

Table 4: Results with early fusion of functionals and BoAW.

N
a

C
s

Dimension W
s

Std. CCC
[s] BoAW Valid Test

1 200 Arousal 8.0 no .799 .738

20 1000 Arousal 8.0 no .677 .511
1 200 Arousal 8.0 yes .796 .728
20 1000 Arousal 8.0 yes .535 .384
1 200 Valence 10.0 no .518 .457
20 1000 Valence 10.0 no .309 .234
1 200 Valence 10.0 yes .521 .465

20 1000 Valence 10.0 yes .245 .196

Table 5: Performance comparison of recently published meth-
ods for speech-based emotion recognition on RECOLA.

Model Ref. CCC
Arousal Valence

Valid Test Valid Test
BLSTM-RNN [26] .800 .398
CNN (end-to-end) [4] .741 .686 .325 .261
Proposed (BoAW) Table 2 .793 .753 .550 .430
Proposed (early fusion) Table 4 .799 .738 .521 .465

ERS on the RECOLA database, by using only MFCC and en-
ergy LLDs. Moreover, we have shown that this representation
is complementary with traditional functionals, as early fusion
improved further the performance for valence.

Future work will comprise the investigation of methods
taking structural information into account, such as the pyra-
mid scheme [5] or n-grams [13], which are both well known
in language processing. To exploit the linguistic information
of the speech, the proposed features from the acoustic domain
will be augmented by ‘classical’ BoW by means of automatic
speech recognition. The BoAW will be further evaluated in real-
life conditions, i. e., on noisy data sets recorded ‘in the wild’.
Moreover, long short-term memory recurrent neural networks
(LSTM-RNN) will be exploited for the regression task, instead
of SVMs, as they are capable of modelling long-term depen-
dencies between features and emotional behaviour.
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• Affective	computing	is	a	“hot”	topic

• Vast	application	fields,	robotics,	behaviomedics,	media,	…

• Shifted	from	small	and	acted	to	large	and	spontaneous

• Context	modelling	with	LSTM	helps,	CNN+LSTM	performs	well

• Simple	but	well	defined	systems	can	perform	better	than	end-to-end
=>	not	(yet)	the	end	of	signal	processing!
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• Toward	BIG	DATA

• ER	community	=>	10	hours	of	data

• ASR	community	=>	10.000	hours	of	data

• Crawl	the	web	– vlogs,	vimeo,	youtube,	…

• Use	novelty	detection	to	identify	non-neutral

• Use	active	learning	to	automatically	label	easiest

x1.000	!!!



Perspectives

• Toward	real-life	data

• Not	“properly”	recorded	=>	issue

• But	that’s	real	life!!!

• Wearable	sensors,	smartphones,	webcam

• Face	diversity	of	individuals	(transfer	learning)
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Perspectives

• Toward	multimodality

• Datasets are	not	all	with ECG,	EDA,	FAU,	…

• Use	pseudo-multimodality to	cross	fertilise	the	missing
modalities

• Model	context	with	available	sensors	(e.g.,	GPS,	
movements,	logs,	calls)
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